Рассмотрим пример электрической цепи, несколько более сложной, чем рассмотрен­ная ранее цепь с выключателем и лампочкой. Итак, обратимся к схеме на рис. 1. Имеется электрическая цепь, составленная из трех резисторов. Мы хотим узнать об­щее сопротивление между клеммами А и В.

Рис. 1 цепь с последовательно параллельным соединением резисторов

Рис. 1   цепь с последовательно параллельным соединением резисторов

 

Итак, имеются три резистора: R1 соединен (включен) параллельно R2, а эта пара соединена последовательно с R3

Разобьем цепь на простейшие части, что всегда удобно при анализе сложных це­пей и схем. Если мы знаем метод определения величины резисторов, соединенных последовательно, можно использовать его для вычисления сопротивления, образуе­мого R3, соединенного последовательно с парой R1 и R2. Но так как мы еще не знаем способа нахождения величины сопротивления параллельного соединения, то сначала требуется разобраться с этим. Вопрос о последовательности анализа цепей и схем очень важен, и мы еще не раз будем к нему обращаться.

Если два резистора (или любых другие компонентов) соединены параллельно, то они должны иметь одинаковое падение напряжения на них. Следовательно, в качест­ве отправной точки, можно воспользоваться законом Ома.

I=V/R.

Теперь, применяя закон Кирхгофа о токах, можно смело утверждать что:

Iобщий= IR1+IR2+…

Значит:       V/Rпаралельное = V/R1 + V/R2 + …

Разделив на V, получим:      1/Rпаралельное = 1/R1 + 1/R2 + …

Итак: обратная величина общего параллельного сопротивления равна сумме об­ратных величин всех резисторов.

Величину, обратную сопротивлению, в электротехнике часто называют про­водимостью, и обозначают буквой С. Тогда

Gобщ =G1+G2

Таким образом, при параллельном включении элементов, алгебраически склады­ваются их проводимости.

В частном случае, когда параллельно включены два резистора, можно вывести более удобную формулу для расчета общего сопротивления (это выражение часто называют «произведение над суммой»):

 

Rпараллельное = R1R2/R1+R2

Итак, мы решили проблему вычисления параллельного включения сопротивле­ний, а теперь необходимо разобраться с последовательным включением.

Для начала, упростим схему, поскольку мы уже умеем вычислять общее сопротив­ление параллельного соединения, которое теперь можно заменить одним сопротив­лением соответствующей величины. Таким образом, на рис. 1.5 показан упрощенный вид все той же цепи, что и на рис. 2, но параллельное включение двух сопротивле­ний заменено одним, так называемым эквивалентным.

 

 

Используя закон Кирхгофа о напряжениях, легко сделать вывод, что сумма паде­ний напряжений на резисторах должна быть равна приложенной ЭДС:

Vобщее = VR1 + V R2 +…

 

 

Рис. 2 Упрощение схемы на рис. 1,используя эквивалентное сопротивление

Рис. 2 Упрощение схемы на рис. 1,используя эквивалентное сопротивление

Теперь применив закон Ома, получим:

VобщееI = IR1 + IR2 +…

 

Но поскольку мы пытаемся рассчитать эквивалентное сопротивление, величина которого равна общему сопротивлению, то удобнее записать

IRобщее = IR1 + I R2 +…

Откуда:

R последовательное=R1 + R2 +…

Общее сопротивление последовательно соединенных резисторов равно сумме со­противлений резисторов.

Используя формулы для параллельного и последовательного включения со­противлений, можно вычислить общее сопротивление любой сложной цепи, как бы «устрашающе» на первый взгляд она не выглядела.

Схемы могут быть очень сложными, но задача их анализа вполне разрешима, если подойти к ней логически. Здесь главное найти изначальный подход к решению, а ма­нипуляции с числами — проблема второстепенная.

Обратимся к цепи, изображенной на рис. 3. Требуется вычислить общее сопро­тивление цепи, то есть сопротивление между клеммами А и В. Поскольку цепь слож­ная, у нас нет правила для нахождения ее эквивалентного сопротивления напрямую, а значит, мы должны разбить сложную цепь на простейшую, к которой где можно применить уже известные нам правила. Таким образом, требуется выделить из слож­ной цепи группы компонентов, имеющие только последовательные или только парал­лельные соединения.

 

Рис. 3 Сложная развлетвленная цепь

Рис. 3 Сложная развлетвленная цепь

 

В этом примере — между узлами А и D только параллельно включенные компо­ненты. Можно вычислить значение их эквивалентного сопротивления и подставить его в схему:

 

Rпараллельное = произведение / сумма = 6×12/6+12 = 4 Ом.

 

Теперь перечерчиваем схему, заменяя параллельное включение этихдвух элемен­тов их эквивалентным сопротивлением (рис. 4).

 

Рис. 4 Первое упрощение сложной цепи с рис. 3

Рис. 4 Первое упрощение сложной цепи с рис. 3

 

Теперь имеются только последовательные и параллельные соединения между узлами А и С. Имеется выбор расчета — либо сперва рассчитать последовательное соединение 2 Ом и 4 Ом, либо параллельное соединение 3 Ом и 6 Ом. Рассчитаем сперва последовательное соединение, поскольку в результате получим эквивалент­ное сопротивление, включенное параллельно сопротивлениям 3 Ом и 6 Ом, а затем найдем сопротивление трех параллельно включенных резисторов.

 

Rпоследовательное = R1 + R2=4 + 2 = 6 Ом.

 

Снова перечерчиваем схему, заменив только что рассчитанное последовательное соединение двух резисторов, одним эквивалентным (рис. 1.8).

Рис. 5 Второе упрощение сложной цепи с рис. 3

Рис. 5 Второе упрощение сложной цепи с рис. 3

Теперь имеются три компонента, включенные параллельно. Тогда:

1/R = 1/R1 + 1/R2 + 1/R3 = 1/3 + 1/6 + 1/6 = 2/3,

Rпаралельное=1,5 Ом

Теперь имеется совсем простая цепь, состоящая из двух последовательно вклю­ченных сопротивлений по 1,5 Ом. Применив правило для последовательного включе­ния двух резисторов, не трудно сказать, общее сопротивление всей цепи равно 3 Ом.

Итак, методами последовательного и параллельного соединения элементов, а так­же путем непосредственного применения законов Ома и Кирхгофа, можно анализиро­вать цепи любой сложности. Однако, существует ряд полезных методов, которые дают возможность несколько упростить и ускорить анализ электрических цепей и схем. Су­ществует множество различных учебников и книг по теории электрических цепей и электротехники, где разбираются различные методы анализа сложных цепей. Рассмат­ривать их все здесь вряд ли является целесообразным, поскольку цели настоящей книги несколько иные. Однако, к ряду таких методов мы будем обращаться далее, где и остано­вимся на них подробнее. Здесь же приведем некоторые самые общие рекомендации.

  • выбор отправной точки (то есть той группы элементов цепи, с которой начина­ется анализ сцепи (см., например, рассуждения к рис. 2) для решения задачи анализа цепи является очень важным и зачастую критическим;
  • отправную точку нужно стараться выбирать как можно дальше от внешних клемм цепи;
  • в качестве отправной точки выбирают группы элементов, включенные только последовательно или только параллельно;
  • анализ обычно проводится от в направлении от отправной точки к внешним клеммам;
  • Процессу анализа цепи очень помогает перечерчивание схемы, постепенно упрощая ее путем замены уже рассчитанной группы элементов на один эквива­

Морган Джонс. Ламповые усилителию. Перевод с английского под общей научной редакцией к.т.н. доц. Иванюшкина Р Ю.

Оставить комментарий

Вы можете использовать следующие теги HTML: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

(обязательно)

(обязательно)

What is 5 + 2 ?
Please leave these two fields as-is:
IMPORTANT! To be able to proceed, you need to solve the following simple math (so we know that you are a human) :-)
© 2011 hifisound.com.ua При использовании материалов с данного сайта, обязательна ссылка на сайт HI-FI sound и первоисточник Поддержка предоставлена компанией www.hifiaudio.com.ua