Уже упоминалось, что электроны движутся в направлении анода ускоренно, и это без всяких преувеличений соответствует действительности. В тот момент, когда электрон покидает область катода, его скорость теоретически принимается равной нулю, однако, он, находясь в постоянном электрическом поле анода, начинает дви­гаться ускоренно, и приобретает энергию, пропорциональную ускоряющему напря­жению:

Е = eV = 1/2 me υ2,

в котором Е — энергия;

е — заряд электрона, принимается равным ≈ 1,602 х 10-19 Кл;

V — ускоряющее напряжение;

те — масса электрона, принимается равной ≈ 9,11 х 10-31 кг;

υ — скорость электрона.

 

Решая это уравнение относительно скорости электрона υ, получим следующее выражение:

формула скорости электрона

В науке часто используется отношение заряда электрона к его массе, е/те, кото­рое имеет приближенное значение 1,7588 х 1011 Кл/кг. При приложении к аноду относительно катода напряжения 100 В электрон достигнет поверхности анода, имея скорость порядка 6 х 10б м/с.

Если использовать предыдущее выражение и подставить в него ускоряющее на­пряжение 512 кВ, (величина, соответствующая, например, напряжению в дальних линиях электропередач), то получится, что скорость электрона может превысить ско­рость света, что, естественно, является невозможным. Причина заключается в том, что приведенное упрощенное выражение справедливо только для массы покоя элект­рона, однако, при движении с околосветовыми скоростями масса электрона возрас­тает, требуя бесконечно большого значения напряжения для ускорения электрона до околосветовых скоростей. С учетом этих условий необходимо использовать более сложное уравнение, предложенное Элли (Alley) и Этвудом (Atwood):

 

формула света в вакууме

 

в котором с — скорость света в вакууме, примерно равна 2,998 х 108 м/с.

 

В качестве домашнего примера действие принципа относительности можно про­демонстрировать на цветном телевизоре. Для исправного цветного кинескопа напря­жение на втором аноде составляет порядка 25 кВ, поэтому скорость электрона в мо­мент удара о поверхность кинескопа составляет более 300 млн км/час, однако более простое уравнение предсказывает скорость, на 3,5% более высокую.

В рентгеновских медицинских установках мишень бомбардируется электронами, имеющими очень высокую скорость, так как для возникновения рентгеновского излу­чения скорость электрона при соударении должна значительно превышать 300 млн км в час. Поэтому в кинескопах домашних телевизоров и мониторов (для снижения интенсивности рентгеновского излучения) не используется ускоряющее напряжение, превышающее 25 кВ, хотя при этом можно было бы обеспечить более высокую чет­кость и фокусировку изображения.

Необходимо учесть, что расстояние между анодом и катодом не входит в каждое из уравнений, хотя теоретически бесконечное расстояние позволило бы бесконечно возрасти времени, во время которого происходит ускорение движения, и даже при сравнительно небольших ускорениях скорость при ударе могла бы оказаться значи­тельной.

Очень многие явления, происходящие внутри электронных ламп, могут быть по­няты при понимании процессов, происходящих при ускоренном движении электрона в электрическом поле анода, приобретении им кинетической энергии и процессах пе­редачи энергии электрона при ударе, когда он достигает анода.

 

Все сказанное выше  вполне справедливо для обсуждения скоро­сти движения ускоренных положительным полем электронов, подлетающих к аноду. Однако в области катода картина совсем иная. Дело в том, что кинетическая энергия электронов, преодолевших работу выхода из металла и покинувших катод, оказыва­ется различной. Таким образом, отрываясь от катода, электроны начинают движение к аноду с различными начальными скоростями. Они невелики, но при детальном рас­смотрении их нельзя считать одинаковыми, как это предполагалось выше, когда рас­сматривался ускоренный поток электронов, подлетающих к аноду. Как будет показа­но ниже, управление электронным потоком в триодах и более сложных электронных лампах осуществляется как раз вблизи катода. Из физической статистики известно, что из-за различных кинетических энергий, скорости электронов, вылетающих из ка­тода распределены по так называемому закону распределения Максвелла. Однако, для дальнейших рассуждений наиболее важным фактом является тот факт, что элек­троны, вылетающие из катода, обладают различными кинетическими энергиями.

Оставить комментарий

Вы можете использовать следующие теги HTML: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

(обязательно)

(обязательно)

What is 10 + 12 ?
Please leave these two fields as-is:
IMPORTANT! To be able to proceed, you need to solve the following simple math (so we know that you are a human) :-)
© 2011 hifisound.com.ua При использовании материалов с данного сайта, обязательна ссылка на сайт HI-FI sound и первоисточник Поддержка предоставлена компанией www.hifiaudio.com.ua